
iMSB	Lua	Widget	Scrip1ng	
Reference Guide

Version 1.0

This document describes the Lua user script programming interface related to script
sensors. Script sensors are specific sensor values whose behavior can and must be
programmed through Lua scripts.

[This page is intentionally left blank]

iMSB Lua Widget Scripting	 	 	 	 	 	 	 	 Introduction

Introduction
With the iMSB Lua Widget scripting libraries user specific widgets can be programmed and
attached to an iMSB display view. Widgets are essentially a graphic representation of a display
element, such as a meter, used to display sensor values or any other graphic representation. A
Lua Widget is attached to a display view the same way as any other pre-defined meter.
Lua Widgets are programmed using the lua scripting language. Lua is a powerful, efficient and
embeddable multi-paradigm programming language designed as a scripting language. Detailed
description and reference information is available at www.lua.org.
The Lua Widget library implements a subset of the iOS UIKit objects and functions. Basic
display elements are taken from UIView, UILabel and UIImage. More advanced and efficient
display elements taken from CAShapeLayer and CGPath are available. Most of these objects
can be animated, in order to develop complex and rich display elements. Programmers having
a knowledge of the Apple’s UIKit will immediately feel at home. It is recommended that the user
reads through the apple documentation before starting using the library. A good starting point is
the “View programming guide for iOS” and “Core animation programming guide”.
Lua Widget scripts can be used together with the Lua Sensor scripting library, to access sensor
values and other attributes that need to be display in a Widget. It is important to note that the
widget library solely handles graphic representations and animations. It does not provide any
means to access sensor data. Useful sensor and value data need to be accessed via the
sensor library.
In order to use Lua scripts the “Expert mode” must be enabled in the “Data logging” section of
the application preferences.
Even if Lua is a quite efficient programming language, the use of widget scripts should be used
moderately as it puts an additional strain on processing power and thus on battery drain of your
device. Before using Lua you should insure that your required display features cannot be
performed by the existing iMSB capabilities.

Lua language
Lua 5.3 has been integrated into iMSB and supports most of its language features. Before you
start you should be familiar with the language concepts and syntax. Good references and
support for Lua can be found on the official web site www.lua.org.
From the standard Lua libraries, the following have been integrated into iMSB:

Lua library Included in iMSB

Math Yes

Table Yes

String Yes

I/O No

Operating system
os.clock(), os.date(),
os.difftime(), os.setlocale(),
os.time() only

Debug No

Package No

Version 1.0	 3

http://www.lua.org
http://www.lua.org

iMSB Lua Widget Scripting	 	 	 	 	 	 	 	 Introduction

In addition, the following libraries form Lua Sensor scripting framework can be used:
• SensorValue class library: represents a sensor value object and exposes a set of

methods to manipulate that value.
• imsb library: covers a set of function for handling announcements and notifications, as

well as controlling application behavior.
• device library: provides access to the iOS device location and motion services in order

to retrieve for instance the actual GPS position, altitude, as well as its orientation.
Please refer to the “iMSB Lua Sensor Scripting Reference” document for further details.

The Lua Widget Scritping Library provides the following classes as an extension to the
language:

• Widget class: The class represents the canvas of the widget that is allocated in the
display view. All drawing is performed in the widget and constrained to its bounds.

• Box class: Box are the fundamental building blocks of your Widget, and the Box class
defines the behaviors that are common to all its subclasses. The Box class represents a
rectangular zone that can be sized, moved, have a background and border color. It
renders content within its bounds rectangle. In addition some interaction with the object
can be performed. Box can nest inside other boxes to create view hierarchies, which offer
a convenient way to organize related content.

• Label class: A Label is a display object that displays one of informational text. You can
configure the overall appearance of a label's text, such as the font, its color and text
alignment. In addition some predefined animation functions are provided for you. The
Label class inherits from the Box class. Thus all functions defined for the Box class also
apply to a Label object.

• Image class: The Image let you efficiently draw any image that can be specified using an
image file stored on the iCloud or on the device. An image content can be changed
dynamically and at any time during the script execution. In the current implementation
only PNG images can be displayed. The Image class inherits from the Box class. Thus
all functions defined for the Box class also apply to a Label object.

• Layer class: Layer objects are 2D surfaces organized in a 3D space and are at the
heart of everything you do when performing complex animations or drawing. Like Box
(and its subclasses), layers manage information about the geometry, content, and visual
attributes of their surfaces. When performing animations you should always consider
doing so with a Layer object instead of a Box, as system resources are handled much
more efficiently.A Layer allows to draw complex drawing shapes with cubic Bezier
splines. This is performed by defining a so called path that will be rendered at runtime. A
path specifies a set of graphic primitives, such as lines, arcs, ellipses, etc. you use to
construct your drawing. Each of these drawing primitives creates a subpath within a path.
Attributes of you drawing such as line color, style, background colors, etc. may as well be
specified. Constructing a path must be done within an :beginPath and :applyPath
call in your code in order for the system to know which primitives belong to the path you
wish to draw. Unlike other objects a path does not have an implicit animation. The path
within a Layer may however be as well animated using a concrete animation function.

Layers can be used as a masking layer to mask or blend the content in its parent the layer
hierarchy. A masking Layer has same drawing and layout properties of any other layer. A mask
Layer is located relative to its parent. It is used in a similar way to a sublayer, but it does not
appear as a normal sublayer. Instead of being drawn inside the parent, the mask Layer

Coroutine No

Version 1.0	 4

iMSB Lua Widget Scripting	 	 	 	 	 	 	 	 Introduction

defines the part of the parent layer that is visible. The Layer’s alpha channel determines how
much of the layer’s content and background shows through. Fully or partially opaque pixels.

Lua scripts are directly stored in each display layout element. It is however possible to import or
export a script file from iCloud. The editing of a Lua script is performed in iMSB with the editor
that is available in the respective display view element. Particular debugging means are not
provided, except for the console print function. A script console can however be used for
displaying error messages and user log information. The console view is available as follows:

• In the lower pane of the script editor. This view allows to load and test the currently edited
script.

• As a console display view accessible through the view tab bar that allows to display
messages during a logging session. This view can be enabled or disabled in the “Expert
mode” of the application settings.

Widget scripts

Setting up a widget script
Lua widget script are basic display elements that need to be added to a display layout.
Therefore go into the layout editor and select the Lua widget display objets.

You may resize and position the element as usual.
In order to access the script editor simply tap the Lua Widget in the display layout view.

Version 1.0	 5

iMSB Lua Widget Scripting	 	 	 	 	 	 	 	 Introduction

The upper pane of the view displays the editor and the Lua code. The lower pane a graphic
representation of the widget once the script is loaded and running. Swiping the lower pane will
additionally display a log view.
The lower toolbar allows to load or save a script, change the font size, as well as load a script,
execute and terminate it.

Script anatomy
A Widget script must always contain at least the following two functions that are called and
executed automatically by iMSB:
 function initialiseWidget(self)

This function is called only once at the start of a real-time or playback logging session. It is
typically used to perform all necessary initialisations required prior to start displaying data.
 function updateWidget(self)

This function gets called on each display update cycle, at the same interval as defined in the
“Telemetry data update” rate you can select in the application settings. This is where display
and data updates will typically to be performed.
It is important that these two functions are defined, with the exact syntax as depicted above,
within the script in order to insure proper operation and avoid errors.
The provided attribute self holds the instance of the Widget object (see below for further
details).

Widget parameters
Within the widget scrip a global parameter variable may be defined to export general setting
data to the application. Typically the name of the widget and the references to sensor values
can be exported to the display layout configuration screen. Settings parameters are defined via
a global table variable that must be named luaWidgetParam and has the following definition:
luaWidgetParam = {
 name= <name>,
 size= {w= ,h= },
 sensorValueFields= {
 {id= <id> [, type= <type>]},
 {id= <id> [, type= <type>]},

 etc…
 }
}

Where:
• name: (string) is the name given to the widget, that will be displayed in the display layout

configuration.
• size: (table) is the normalised size (width and height) given to the widget. When defining

a widget you always need to provide a default, i.e. called normalised size. This
represents the bounds and coordinates in which the programmer will place its display
elements. Note that the actual displayed widget may have any size chosen by the user.
The iMSB application will in these cases take care to apply the required scaling. As a
programmer you only need to care about the normalised size.

Version 1.0	 6

iMSB Lua Widget Scripting	 	 	 	 	 	 	 	 Introduction

• sensorValueFields: (table, optional) are used to expose sensor value fields to the
display settings. For each field the user may specify a sensor value. Sensor values
allocated to each field can the retrieved via the self:sensorValueForField(id)
function , where self is the instance of the widget and id the reference to the value
field.  
Each value field is defined as a table of:

o id: (string) the name given to the value field, as it will appear in the display
settings.

o type: (string, optional) is the type of the sensor value allowed. Possible values
are:

▪ "any"
▪ "scalar"
▪ "time"
▪ "string"
▪ "coordinate"
▪ "date"
▪ "boolean"

Note that in order for widget parameters to be populated to the app, the script must at least be
run once.

Dark mode support
The iMSB app supports the iOS dark mode. Generally speaking it is the programmer’s
responsibility to adapt the colors used in your widget to correctly display in dark mode. You may
identify if dark mode is enabled or not by the means of the widget’s :isDarkMode method.
The Widget library provides however a standard predefined set of colors available via
the :getColor method. These colors already have their dark mode counter part. Thus no
particular measures need to be taken.

Version 1.0	 7

iMSB Lua Widget Scripting	 	 	 	 iMSB Lua Widget function reference

iMSB Lua Widget function reference

The Widget class
:getWidgetSize()
:getWidgetUnscaledSize()
:sensorValueForField(fieldName)
:setMeterView(meterName)
:setMeterViewColors({r=, g=, b=, a=}, {r=, g=, b=, a=} [,{r=, g=,
b=, a=}])
:getColor(colorName)
:isDarkMode()

The Box class
Box:new([parent,] {x=, y=, w=, h=})
:setFrame({x=, y=, w=, h=} [, animationDur])
:frame()
:bounds()
:setCenter({x=, y=} [, animationDur])
:center()
:rotate(angle [, animationDur])
:move(dx, dy [, animationDur])
:scale(sx, sy [, animationDur])
:setBackgroundColor({r=, g=, b=, a=} [, animationDur])
:setAlpha(alpha [, animationDur])
:setBorder(lineWidth [, cornerRadius])
:setBorderColor({r=, g=, b=, a=} [, animationDur])
:setShadow({r=, g=, b=, a=}, opacity, radius [,{w=, h=})
:hide(hidden [, animationDur])
:doAnimation(func, animationDur [, completionFct])
:addTapHandler(handlerFct)

The Label class
Label:new([parent,] {x=, y=, w=, h=})
:setText(text)
:setFont(fontName, fontSize)
:setTextColor({r=, g=, b=, a=})
:setTextAlignment(alignment)
:setAlarmed(isAlarmed)
:setAlarmColor({r=, g=, b=, a=})

The Image class
Image:new([parent,] {x=, y=, w=, h=})
:setImage(imageName)
:setContentMode(mode)
:setAlarmed(isAlarmed)

Version 1.0	 8

iMSB Lua Widget Scripting	 	 	 	 iMSB Lua Widget function reference

:setAlarmImage(imageName [{r=, g=, b=, a=}])

The Layer class
Basic Layer functions
Layer:new(parent, {x=, y=, w=, h=})
Layer:newMask(parent)
:delete()
:reorder(index)
:setFrame({x=, y=, w=, h=})
:frame()
:setBounds({x=, y=, w=, h=})
:bounds()
:setPosition({x=, y=})
:position()
:setAnchor({x=, y=)
:anchor()
:hide(hidden)
:setBackgroundColor({r=, g=, b=, a=})
:setOpacity(opacity)
:setBorderWidth(lineWidth)
:setCornerRadius(cornerRadius)
:setBorderColor({r=, g=, b=, a=})
:setShadow({r=, g=, b=, a=}, opacity, radius [,{w=, h=})

Layer transformation and animation functions
:rotate(angle)
:move(dx, dy)
:scale(sx, sy)
:doAnimation(func, animationDur [, completionFct])

Defining Layer path
:beginPath()
:applyPath([invert])
:applyShadowPath()
:moveToPoint({x=, y=})
:lineToPoint({x=, y=} [,rotation, [{x=, y=}]])
:rectangle({x=, y=, w=, h=} [, roundn, [,rotation, [{x=, y=}]]])
:ellipseInRect({x=, y=, w=, h=}[,rotation, [{x=, y=}]])
:arc({x=, y=}, r, startAngle, endAngle, clockwise)
:arcToPoint(p1{x=, y=}, p2{x=, y=}, r)
:curveToPoint(cp1{x=, y=}, cp2{x=, y=}, {x=, y=})
:closePath()

Setting path attributes
:setStrokeColor({r=, g=, b=, a=})

Version 1.0	 9

iMSB Lua Widget Scripting	 	 	 	 iMSB Lua Widget function reference

:setLineWidth(width)
:setStrokeStart(start)
:setStrokeEnd(end)
:setFillColor({x=, y=)
:setLineDashPattern({ })
:setLineJoin(joinType)

Version 1.0	 10

iMSB Lua Widget Scripting	 	 	 	 	 	 	 The Widget class

The Widget class
The Widget class represents the canvas of the widget that is allocated in the display view. All
drawing is performed in the widget and constrained to its bounds.
You do not explicitly create a widget object as this is done automatically for you when the script
is loaded. The reference to the widget object is provided by the self variable provided in the
initialiseWidget and updateWidget script functions.

 :getWidgetSize()

Gets the normalised size in points of the widget as specified in the luaWidgetParam global
variable. If the widget size was not specified a default (300, 300) size is returned.
Parameters:
• n/a

Returns:
• {w=, h=}: (table) the normalised size of the widget

Discussion:
Programmers should always consider the normalised size when manipulating a widget and its
components. The scaling of the display elements to the actual widget as defined on the layout
is automatically performed for you.

Usage:
local size
size = self:getWidgetSize()

 :getWidgetUnscaledSize()

Gets the actual size in points of the widget as allocated on the display view.
Parameters:
• val: (number, string) any numerical or string value
• {w=, h=}: (table) the actua size of the widget

Returns:
• n/a

Discussion:
This method is provided for convenience if the actual widget size is required. As a
programmer you should never use the actual widget size for setting up display elements, as
the scaling would not be handled correctly anymore.

Usage:
local size
size = self:getWidgetUnscaledSize()

 :sensorValueForField(fieldId)

Returns an instance of a SensorValue identified by its field id specified in the
sensorValueFields section of the global luaWidgetParam variable.

Version 1.0	 11

iMSB Lua Widget Scripting	 	 	 	 	 	 	 The Widget class

Parameters:
• fieldId: (string) the name of the field used to reference a sensor value as defined in the

sensorValueFields section of the global luaWidgetParam variable
Returns:
• instance: (userdata) the instance of the iMSB sensor value of class SensorValue
• null if the value does not exist or has not been set by the user

Discussion:
If the sensorValueFields fieldId references an existing iMSB sensor value you can use
this method to directly retrieve an instance of the value of class SensorValue. You can then
use all methods to access the required parameters of this value.
Please refer to the “iMSB Lua Sensor Scripting Reference” document for further details on the
SensorValue class and its methods.

Usage:
local firstSensorValue
firstSensorValue = self:sensorValueForField("firstValue")
print(firstSensorValue:getName())

 :setMeterView(meterName)

Sets a standard iMSB meter or panell as the widget background.
Parameters:
• meterName: (string) a string value indicating which meter type is to be applied as a

background. The following meter types are available: 
- “roundMeter”: displays the standard iMSB round meter canvas 
- “lcdPanel”: displays the standard iMSB LCD panel  
- “none”: does not apply any background (default)

Returns:
• n/a

Discussion:
For your convenience the standard round meter or lcd panel canvas can be used as
background for your Widget if required. By default no specific background is applied to the
Widget.
The colors of the view components can be adapted with the :setMeterViewColors method.

Usage:
self:setMeterView("roundMeter")

 :setMeterViewColors({r=, g=, b=, a=}, {r=, g=, b=, a=} [,{r=,
g=, b=, a=}])

Sets the border and panel color of a standard meter view. Optionally the intermediate color can
be specified as well.
Parameters:
• {r=, g=, b=, a=}: (table) the color of the outer border expressed with their red, green

and blue color components, as well as the alpha (transparency)

Version 1.0	 12

iMSB Lua Widget Scripting	 	 	 	 	 	 	 The Widget class

• {r=, g=, b=, a=}: (table) the color of the inner panel expressed with their red, green
and blue color components, as well as the alpha (transparency)

• {r=, g=, b=, a=}: (table) the intermediate color expressed with their red, green and
blue color components, as well as the alpha (transparency)

Returns:
• n/a

Discussion:
Color components and alpha (transparency) are expressed as a number between 0.0 and
1.0.
As an alternative you can use the :getColor method from the widget class to determine
the color components using on of the predefined colors.

Usage:
self:setMeterViewColors(self:getColor("orangeColor"),  

 self:getColor("lightGrayColor"))

 :getColor(colorName)

Convenience method to return a color representation given by its name.
Within the Widget scripting library colours are generically specified by a {r=, g=, b=, a=}:
table. A set of standard colours have been predefined which can be retrieved via this function.
Parameters:
• colorName: (string) name of the color

Returns:
• {r=, g=, b=, a=}: (table) the RGB and alpha representation of the color

Discussion:
Color and alpha (transparency) components are expressed as a number between 0.0 and
1.0.
An error message is returned if no color representation could be found for the given color
name.
The following colors are predefined and can be retrieved:
• “clearColor”
• “whiteColor”
• “blackColor”
• “greenColor”
• “greenColor2”
• “redColor”
• “darkBlueColor”
• “blueColor”
• “magentaColor”
• “yellowColor”
• “lightOrangeColor”
• “darkOrangeColor”
• “grayColor”
• “grayColor2”

Version 1.0	 13

iMSB Lua Widget Scripting	 	 	 	 	 	 	 The Widget class

• “grayColor3”
• “grayColor4”
• “grayColor5”
• “grayColor6”
• “labelColor”
• “secondaryLabelColor”
• “tertiaryLabelColor”
• “alarmColor”
• “warningColor”
• “tintColor”
• “lcdColor”

Usage:
self:getColor(“lcdColor")

 :isDarkMode()

Convenience method that indicates if the device is in dark mode or not.
Parameters:
• n/a

Returns:
• darkMode: (boolean) true if the device is in dark mode. False otherwise

Discussion:
When the device is in dark mode you may need to adapt your color definitions to suit this
mode.
Note that all predefined colors return by the method :getColor already have their dark
mode counter part. Thus no particular measures need to be taken.

Usage:
self:isDarkMode()

Version 1.0	 14

iMSB Lua Widget Scripting	 	 	 	 	 	 	 The Box class

The Box class
Box are the fundamental building blocks of your Widget, and the Box class defines the
behaviors that are common to all its subclasses. The Box class represents a rectangular zone
that can be sized, moved, have a background and border color. It renders content within its
bounds rectangle. In addition some interaction with the object can be performed.
Box can nest inside other boxes to create view hierarchies, which offer a convenient way to
organize related content. Nesting a Box creates a parent-child relationship between the nested
child boxes and the parent When a subview’s visible area extends outside of the bounds of its
superview, a clipping is applied.
The frame and bounds properties define the geometry of each Box. The frame property
defines the origin and dimensions of the Box in the coordinate system of its superview. The
bounds property defines the internal dimensions of the Box as it sees them, and its use is
almost exclusive to custom drawing code.
Changes to several Box properties can be animated—that is, changing the property creates an
animation starting at the current value and ending at the new value that you specify.

 Box:new([parent,] {x=, y=, w=, h=})

Creates and returns a newly allocated Box object with the specified frame rectangle.
Parameters:
• parent: (userdata, optional): the parent object to which the current Box is to be added as

a child view
• {x=, y=, w=, h=}: (table) the frame rectangle, i.e. position and size of the box. The

origin of the frame is relative to the superview in which the box is nested
Returns:
• instance: (userdata) the instance of the created box

Discussion:
The new Box object must be inserted into the view hierarchy before it can be used. The
parent attribute specifies to which object the Box is to be added as a child. If a parent is
not provided, then it will be added directly to the widget.

Usage:
aBox = Box:new({x=10, y=10, w=100, h=100})

 :setFrame({x=, y=, w=, h=} [, animationDur])

Sets the frame rectangle, which describes the Box location and size in its superview’s
coordinate system.
Parameters:
• {x=, y=, w=, h=}: (table) the frame rectangle, i.e. position and size of the box. The

origin of the frame is relative to the superview in which the box is nested
• animationDur: (number, optional) the duration of the animation transition from the

original to the destination frame
Returns:
• n/a

Version 1.0	 15

iMSB Lua Widget Scripting	 	 	 	 	 	 	 The Box class

Discussion:
Changing the frame rectangle automatically redisplays the Box.
Changes to the frame property can be animated. The duration of the animation is set via the
animationDur parameter.

Usage:
aBox:setFrame({x=20, y=20, w=150, h=150}, 0.3)

 :frame()

Returns the frame rectangle of a Box instance, which describes the Box location and size in its
superview’s coordinate system.
Parameters:
• n/a

Returns:
• {x=, y=, w=, h=}: (table) the frame rectangle, i.e. position and size of the box. The

origin of the frame is relative to the superview in which the box is nested
Usage:
local myBoxRect
myBoxRect = aBox:frame()

 :bounds()

Returns the bounds rectangle of a Box instance, which describes the view’s location and size
in its own coordinate system.
Parameters:
• n/a

Returns:
• {x=, y=, w=, h=}: (table) the bounds rectangle

Discussion:
The default bounds origin is (0,0) and the size is the same as the size of the rectangle in the
frame property.

Usage:
local myBoxBounds
myBoxBounds = aBox:bounds()

 :setCenter({x=, y=} [, animationDur])

Sets the center point of the Box’s frame rectangle
Parameters:
• {x=, y=}: (table) the coordinate of the center point, relative to the superview’s coordinate

system

Version 1.0	 16

iMSB Lua Widget Scripting	 	 	 	 	 	 	 The Box class

• animationDur: (number, optional) the duration of the animation transition from the
original to the destination center

Returns:
• n/a

Discussion:
The center point is specified in points in the coordinate system of its superview. Setting this
property updates the origin of the rectangle in the frame property appropriately. Use this
property, instead of the frame property, when you want to change the position of a Box. The
center point is always valid, even when scaling or rotation factors are applied to the view's
transform.
Changes to the center property can be animated. The duration of the animation is set via the
animationDur parameter.

Usage:
aBox:setCenter({x=20, y=20}, 0.3)

 :center()

Returns the center point of the Box’s frame rectangle.
Parameters:
• n/a

Returns:
• {x=, y=}: (table) the coordinate of the center point, relative to the superview’s coordinate

system
Discussion:

The center point is specified in points in the coordinate system of its superview.
Usage:
local myBoxCenter
myBoxCenter = aBox:center()

 :rotate(angle [, animationDur])

Rotates a Box around its center point by a given angle.
Parameters:
• angle: (number) the angle of rotation given in degrees
• animationDur: (number, optional) the duration of the animation transition from the

original to the destination angle
Returns:
• n/a

Discussion:
The angle of rotation is expressed in degrees. A positive value specifies counterclockwise
rotation and a negative value specifies clockwise rotation.

Version 1.0	 17

iMSB Lua Widget Scripting	 	 	 	 	 	 	 The Box class

Changes to the angle property can be animated. The duration of the animation is set via the
animationDur parameter.

Usage:
aBox:rotate(30, 0.3)

 :move(dx, dy [, animationDur])

Translates a Box instance by a given amount on the x and y axis of the coordinate system.
Parameters:
• dx: (number) the translation direction on the x axis expressed in points
• dy: (number) the translation direction on the y axis expressed in points
• animationDur: (number, optional) the duration of the animation transition from the

original to the destination position
Returns:
• n/a

Discussion:
Changes to the angle property can be animated. The duration of the animation is set via the
animationDur parameter.

Usage:
aBox:move(10, 0, 0.3)

 :scale(sx, sy [, animationDur])

Scales the size of a Box instance by a given scale factor expressed on the x and y axis of the
coordinate system.
Parameters:
• sx: (number) the factor by which to scale the x-axis of the coordinate system
• sy: (number) the factor by which to scale the y-axis of the coordinate system
• animationDur: (number, optional) the duration of the animation transition from the

original to the destination frame
Returns:
• n/a

Discussion:
Changes to the angle property can be animated. The duration of the animation is set via the
animationDur parameter.

Usage:
aBox:scale(0.8, 1.2, 0.3)

 :setBackgroundColor({r=, g=, b=, a=} [, animationDur])

Sets the background color of Box instance.
Parameters:

Version 1.0	 18

iMSB Lua Widget Scripting	 	 	 	 	 	 	 The Box class

• {r=, g=, b=, a=}: (table) the color expressed with their red, green and blue color
components, as well as the alpha (transparency)

• animationDur: (number, optional) the duration of the animation transition from the
original to the destination color

Returns:
• n/a

Discussion:
Color components and alpha (transparency) are expressed as a number between 0.0 and
1.0.
As an alternative you can use the :getColor method from the widget class to determine
the color components using on of the predefined colors.
Changes to the color property can be animated. The duration of the animation is set via the
animationDur parameter.

Usage:
aBox:setBackgroundColor({r=255, g=128, b=152, a=1.0})

 aBox:setBackgroundColor(self:getColor("whiteColor"))

 :setAlpha(alpha [, animationDur])

Sets the alpha (transparency component) of a Box instance background color.
Parameters:
• alpha: (number) the alpha component to be applied to the background color
• animationDur: (number, optional) the duration of the animation transition from the

original to the destination alpha
Returns:
• n/a

Discussion:
Color components and alpha (transparency) are expressed as a number between 0.0 and
1.0.
Changes to the color property can be animated. The duration of the animation is set via the
animationDur parameter.

Usage:
aBox:setAlpha(0.8)

 :setBorder(lineWidth [, cornerRadius])

Draws a border line of a given width around a Box instance. Optionally rounds the corners of
the shape by the provided radius.
Parameters:
• lineWidth: (number) the width of the border line in points to be drawn
• cornerRadius: (number, optional) the corner radius expressed in points if provided

Returns:

Version 1.0	 19

iMSB Lua Widget Scripting	 	 	 	 	 	 	 The Box class

• n/a

Discussion:
By default the color of the border line is drawn with a black color. The border line color can be
changed with the :setBorderColor method.
Usage:
aBox:setBorder(2, 10)

 :setBorderColor({r=, g=, b=, a=} [, animationDur])

Sets the color of a Box border line.
Parameters:
• {r=, g=, b=, a=}: (table) the color expressed with their red, green and blue color

components, as well as the alpha (transparency)
Returns:
• n/a

Discussion:
Before using this method a border line must be draw around the Box with the :setBorder
method.
Color components and alpha (transparency) are expressed as a number between 0.0 and
1.0.
As an alternative you can use the :getColor method from the widget class to determine
the color components using on of the predefined colors.

Usage:
aBox:setBorderColor({r=255, g=128, b=152, a=1.0})

 aBox:setBorderColor(self:getColor("redColor"))

 :setShadow({r=, g=, b=, a=}, opacity, radius [,{w=, h=})

Draws a shadow around a Box instance. Properties like the shadow color, its opacity and blur
radius can be set, as well as an optional offset.
Parameters:
• {r=, g=, b=, a=}: (table) the shadow color expressed with their red, green and blue

color components, as well as the alpha (transparency)
• opacity: (number) set the shadow opacity. Opacity is expressed by a number between 0

and 1
• radius: (number) the blur radius (in points) used to render the layer’s shadow
• {w=, h=}: (table, optional) the offset in points of the shadow. The default value of this

property is {w=0.0, h=0.0}
Returns:
• n/a

Discussion:

Version 1.0	 20

iMSB Lua Widget Scripting	 	 	 	 	 	 	 The Box class

Note that the alpha component does not have any effect on the shadow opacity. You need to
set the opacity attribute in order the control the opacity.
By default the shadow offset is set to {w=0.0, h=0.0}, which means that it will be spread
evenly around the Box shape.
Drawing a shadow can be animated. However, you should consider performing shadow
animation by the means of the :doAnimation method.

Usage:
aBox:setShadow(self:getColor("blackColor"), 0.8, 5, {w=3.0, h=3.0})

 :hide(hidden [, animationDur])

Allows to hide or show a shape.
Parameters:
• hidden: (boolean) a Boolean value that determines whether the view is hidden
• animationDur: (number, optional) the duration of the animation transition from the

original to the destination frame
Returns:
• n/a

Discussion:
Changes to the hidden property can be animated. The duration of the animation is set via the
animationDur parameter.

Usage:
aBox:hide(true)

 :doAnimation(func, animationDur [, completionFct])

This function allows to conveniently perform a batch animation of several attributes of a Box
instance. Calls a user provided function and animates its execution. Optionnaly a callback
function can be executed at the end of the animation.
Parameters:
• func: (function) the function you provide that will be executed in an animation
• animationDur: (number) the duration of the animation for the function execution
• completionFct: (function, optional) an optional function that will be called at the end of

an animation
Returns:
• n/a

Discussion:
If you wish to animate several attributes of a Box instance you might consider doing this in a
specific animation function you provided to this method.
After the animation has been performed an optional completion function is called.

Usage:
 function myAnimation()

Version 1.0	 21

iMSB Lua Widget Scripting	 	 	 	 	 	 	 The Box class

 aBox:rotate(45)
 aBox:move(30, 30)
 aBox:setBackgroundColor(self:getColor("greenColor"))
 end

 function myCallback()
 print("animation ended")
 end

 aBox:doAnimation(myAnimation, 4, myCallback)

 :addTapHandler(handlerFct)

Adds a user provided tap handler function to the Box frame. When the user taps the Box within
its frame the handler function gets called.
Parameters:
• handlerFct: (function) the function you provide that will be executed when the user taps

on the object
Returns:
• n/a

Discussion:
A tap handler is typically used if you want to execute an action on the widget, such as for
instance a sensor value announcement when the user taps on a Box object. It is your
responsibility to handle user interaction with you widget.
The tap handler is limited and only active on the frame of the Box. That means that when the
user taps the object somewhere within its frame the handler function will be called.
You can define only tap handler per Box instance. Each Box instance can however have its
own dedicated tap handler.

Usage:
 function myCallback()
 print(“user tapped on object")
 end

 aBox:addTapHandler(myCallback)

Version 1.0	 22

iMSB Lua Widget Scripting	 	 	 	 	 	 	 The Label class

The Label class
A Label is a display object that displays one of informational text.
You can configure the overall appearance of a label's text, such as the font, its color and text
alignment. In addition some predefined animation functions are provided for you.
The Label class inherits from the Box class. Thus all functions defined for the Box class also
apply to a Label object.

 Label:new([parent,] {x=, y=, w=, h=})

Creates and returns a newly allocated Label object with the specified frame rectangle.
Parameters:
• parent: (userdata, optional): the parent object to which the current Label is to be added

as a child view
• {x=, y=, w=, h=}: (table) the frame rectangle, i.e. position and size of the Label. The

origin of the frame is relative to the superview in which the Label is nested
Returns:
• instance: (userdata) the instance of the created Label

Discussion:
The new Label object must be inserted into the view hierarchy before it can be used. The
parent attribute specifies to which object the Label is to be added as a child. If a parent is
not provided, then it will be added directly to the widget.

Usage:
aLabel = Label:new({x=10, y=10, w=100, h=100})

 :setText(text)

Sets as text string to the label
Parameters:
• text: (string): the text that the label displays

Returns:
• n/a

Usage:
aLabel:setText(“Hello world”)

 :setFont(fontName, fontSize)

Assigns a font by its name and sets the size of the font to the Label.
Parameters:
• fontName: (string): the name of the font as defined in the iOS system
• fontSize: (number) the size in points to be given to the font

Returns:
• n/a

Discussion:

Version 1.0	 23

iMSB Lua Widget Scripting	 	 	 	 	 	 	 The Label class

In general all fonts that are available as standard in iOS can be used. The font name must
however follow the iOS naming convention. There are a couple of references in the web
displaying the existing iOS fonts, such as http://iosfonts.com for instance.
The lcd font that is used in iMSB is a non standard custom font that is named “lcd” and can
be accessed via this name.
Throughout iMSB “Helvetica” is the font generally used for standard text. You might need
to consider this one to harmonise with the iMSB general look and fell.

Usage:
aBox:setFont(“lcd”, 17)
aBox:setFont(“Helvetica-Bold”, 32)

 :setTextColor({r=, g=, b=, a=})

Sets the foreground color of the text in a Label
Parameters:
• {r=, g=, b=, a=}: (table) the text color expressed with its red, green and blue color

components, as well as the alpha (transparency)
Returns:
• n/a

Discussion:
 Color components and alpha (transparency) are expressed as a number between 0.0 and
1.0.
As an alternative you can use the :getColor method from the widget class to determine
the color components using on of the predefined colors.
Changes to the color property can be animated. The duration of the animation is set via the
animationDur parameter.

Usage:
aLabel:setTextColor({r=255, g=128, b=152, a=1.0})

 aLabel:setTextColor(self:getColor("blackColor"))

 :setTextAlignment(alignment)

Sets the alignment of the text within the Label’s frame rectangle.
Parameters:
• alignment: (string): a string defining the text alignment. One of the following attributes

must be used: 
- “left”: text is visually left aligned  
- “right”: text is visually right aligned  
- “center”: text is centred within the bounding frame  
- “justified”: text is justified

Returns:
• n/a

Discussion:

Version 1.0	 24

http://iosfonts.com

iMSB Lua Widget Scripting	 	 	 	 	 	 	 The Label class

By default if nothing is defined, the text alignment is always “left”.
Usage:
aLebel:setTextAlignment(“center”)

 :setAlarmed(isAlarmed)

Enables or disables the alarm mode of a text Label. When a Label is in alarm mode it
alternatively blinks between its foreground color and the alarm color.
Parameters:
• isAlarmed: (boolean): enables or disables the alarmed mode

Returns:
• n/a

Discussion:
By default the alarm color is set to the standard red “alarmColor”. The alarm color can
however be changed with the :setAlarmColor method.

Usage:
aLable:setAlarmed(true)

 :setAlarmColor({r=, g=, b=, a=})

Sets the alternate alarm color when a Label is blinking in alarm mode.
Parameters:
• {r=, g=, b=, a=}: (table) the text alarm color expressed with its red, green and blue

color components, as well as the alpha (transparency)
Returns:
• n/a

Discussion:
The color attributes are only relevant when a Label ist set in alarm mode with
the :setAlarmed method.
 Color components and alpha (transparency) are expressed as a number between 0.0 and
1.0.
As an alternative you can use the :getColor method from the widget class to determine
the color components using on of the predefined colors.

Usage:
aLabel:setAlarmColor({r=255, g=128, b=152, a=1.0})

 aLabel:setAlarmColor(self:getColor("warningColor"))

Version 1.0	 25

iMSB Lua Widget Scripting	 	 	 	 	 	 	 The Image class

The Image class
The Image let you efficiently draw any image that can be specified using an image file stored
on the iCloud or on the device. An image content can be changed dynamically and at any time
during the script execution.
An Image uses setContentMode method and the configuration of the image itself to
determine how to display the image. It is best to specify images whose dimensions match the
dimensions of the Image exactly, but it can scale your images to fit all or some of the available
space. If the size of the Image itself changes, it automatically scales the image as needed.
Images are composited onto the Image’s background. Any transparency in the image allows
the Image background to show through.
In the current implementation only PNG images can be displayed.
The Image class inherits from the Box class. Thus all functions defined for the Box class also
apply to a Label object.
Image files you use in your script may be stored on the iCloud or on the device itself if iCloud is
not used. On the iCloud the files must reside in the “iMSB” app folder in a directory named
“images”. If this folder does not exist or is not named correctly the script will not be able to see
them. Within the image root folder you may organise your image files in subfolder according to
your liking. On the iMSB app’s widget script editor you find a tool, that you can access via the
tool bar to help you, copy and organise your files, as well as create nested subfolders. When
iCloud is not used for storing data you need to use the iMSB image organiser to copy your files
from their original to the correct location.

 Image:new([parent,] {x=, y=, w=, h=})

Creates and returns a newly allocated Image object with the specified frame rectangle.
Parameters:
• parent: (userdata, optional): the parent object to which the current Image is to be added

as a child view
• {x=, y=, w=, h=}: (table) the frame rectangle, i.e. position and size of the Image. The

origin of the frame is relative to the superview in which the Image is nested
Returns:
• instance: (userdata) the instance of the created Image

Discussion:
The new Image object must be inserted into the view hierarchy before it can be used. The
parent attribute specifies to which object the Image is to be added as a child. If a parent is
not provided, then it will be added directly to the widget.

Usage:
anImage = Image:new(aBox, {x=10, y=10, w=100, h=100})

 :setImage(imageName)

Sets the image to display provided by its file name into an Image instance.
Parameters:
• imageName: (string, optional): the file path of the image to be loaded relative to the image

store root directory

Version 1.0	 26

iMSB Lua Widget Scripting	 	 	 	 	 	 	 The Image class

Returns:
• n/a

Discussion:
Image files you use need be stored on the iCloud or on the device itself if iCloud is not used.
On the iCloud the files must reside in the “iMSB” app folder in a directory named “images”.
When iCloud is not used you need to use the iMSB image organiser to copy your files from
their original to the correct location
The path to the image file you provide to this method must be specified relative to the root
image file folder.
In the current implementation only PNG images can be displayed.

Usage:
anImage:setImage(“subFolder/testImage.png”)

 :setContentMode(mode)

Sets the option to specify how an Image adjusts its content when displayed or its size is
changed. Provides layout behavior for the Image content, as opposed to the frame of the view.
This property also affects how the content is scaled to fit the view.
Parameters:
• mode: (string):preferred content behaviour. The following content modes can be specified:

- “scaleToFill”: option to scale the content to fit the size of itself by changing the
aspect ratio of the content if necessary.

- “aspectFit”: option to scale the content to fit the size of the view by maintaining the
aspect ratio. Any remaining area of the view’s bounds is transparent.

- “aspectFill”: option to scale the content to fill the size of the view. Some portion of
the content may be clipped to fill the view’s bounds.

- “center”: option to center the content in the view’s bounds, keeping the proportions
the same.

- “top”: option to center the content aligned at the top in the view’s bounds.
- “bottom”: option to center the content aligned at the bottom in the view’s bounds.
- “left”: option to align the content on the left of the view.
- “right”: option to align the content on the right of the view.

Returns:
• n/a

Discussion:
By default when an Image is created its content scaling is set to “aspectFit”.

Usage:
anImage:setContentMode(“aspectFill”)

 :setAlarmed(isAlarmed)

Enables or disables the alarm mode of an Image. When an Image is in alarm mode it
alternatively blinks between its standard image and an alternate image.
Parameters:
• isAlarmed: (boolean): enables or disables the alarmed mode

Version 1.0	 27

iMSB Lua Widget Scripting	 	 	 	 	 	 	 The Image class

Returns:
• n/a

Discussion:
You need to explicitly set an alternate image for the alarmed state using
method :setAlarmImage. By default the alarmed image is empty.

Usage:
anImage:setAlarmed(true)

 :setAlarmImage(imageName [{r=, g=, b=, a=}])

Sets the alternate alarm image when an Image is blinking in alarm mode. Optionally sets a
specific view background color for the alarm mode.
Parameters:
• imageName: (string, optional): the file path of the alarm image to be loaded relative to the

image store root directory
• {r=, g=, b=, a=}: (table, optional) the background color you wish to apply to the view

in the alarmed mode. The color expressed with its red, green and blue color components,
as well as the alpha (transparency)

Returns:
• n/a

Discussion:
When setting an alarm image, the image will be shown in alternation with the standard image.
By default the alarm image is empty. Not specifying an alarm image will alternately just
display the normal image.
Image files you use need be stored on the iCloud or on the device itself if iCloud is not used.
On the iCloud the files must reside in the “iMSB” app folder in a directory named “images”.
When iCloud is not used you need to use the iMSB image organiser to copy your files from
their original to the correct location. The path to the image file you provide to this method must
be specified relative to the root image file folder.
In addition an alternate background color can be set.for the alarm mode. If no alternate color
is specified the standard background color will be used instead.
 Color components and alpha (transparency) are expressed as a number between 0.0 and
1.0.
As an alternative you can use the :getColor method from the widget class to determine
the color components using on of the predefined colors.

Usage:
anImage:setAlarmImage(“testImageRed.png”)

Version 1.0	 28

iMSB Lua Widget Scripting	 	 	 	 	 	 	 The Layer class

The Layer class
Layer objects are 2D surfaces organized in a 3D space and are at the heart of everything you
do when performing complex animations or drawing. Like Box (and its subclasses), layers
manage information about the geometry, content, and visual attributes of their surfaces. Unlike
views, layers do not define their own appearance. A layer merely manages the state
information surrounding a bitmap. Layers do not necessarily do any actual drawing in your
script. Instead, a layer captures the content your script provides and caches it in a bitmap.
When you subsequently change a property of the layer, all you are doing is changing the state
information associated with the layer object. Thus when performing animations you should
always consider doing so with a Layer object instead of a Box, as system resources are
handled much more efficiently.
A Layer object cannot be created and reside on its own in a script, but must be at least added
to a Box (or one if its subclasses). A Layer can be added as a sublayer to an existing one. You
can as such construct a whole layer hierarchy in a Box or a Layer who’s ordering can be
manipulated in script runtime.
When performing animations you should consider keeping the content of your layers simple
and add simple drawing objects in separate layers. Layers share very similar attributes to a
Box, such as setting background colors, borders, positioning and resizing, moving or scaling.
When performing animation on such attributes you should consider doing this with a Layer
instead of directly with a Box, although both methods are possible. Animatable Layer
attributes do not provide a way to control the animation duration directly on the attribute itself,
but have an implicit animation built in already that allows for a smooth transition from one state
to the other. If more fine grained animation is required you should consider doing so with
the :doAnimation method.
A Layer allows to draw complex drawing shapes with cubic Bezier splines. This is performed
by defining a so called path that will be rendered at runtime. A path specifies a set of graphic
primitives, such as lines, arcs, ellipses, etc. you use to construct your drawing. Each of these
drawing primitives creates a subpath within a path. Attributes of you drawing such as line color,
style, background colors, etc. may as well be specified. Constructing a path must be done
within an :beginPath and :applyPath call in your code in order for the system to know
which primitives belong to the path you wish to draw. Unlike other objects a path does not have
an implicit animation. The path within a Layer may however be as well animated using a
concrete animation function.
A shape path may also be used for creating complex or special effect shadows. Constructing a
shadow path must be done between a :beginPath and :applyShadowPath call. If you
specify a shadow path, the layer creates its shadow using the specified path instead of the
layer’s composited alpha channel. The path you provide defines the outline of the shadow. It is
filled using the current shadow color, opacity, and blur radius.
Layers can be used as a masking layer to mask or blend the content in its parent the layer
hierarchy. A masking Layer has same drawing and layout properties of any other layer. A mask
Layer is located relative to its parent. It is used in a similar way to a sublayer, but it does not
appear as a normal sublayer. Instead of being drawn inside the parent, the mask Layer
defines the part of the parent layer that is visible. The Layer’s alpha channel determines how
much of the layer’s content and background shows through. Fully or partially opaque pixels
allow the underlying content to show through, but fully transparent pixels block that content. If
the mask Layer is smaller than the parent layer, only the parts of the parent that intersect the
mask will be visible.

Version 1.0	 29

iMSB Lua Widget Scripting	 	 	 	 	 	 	 The Layer class

When creating a masking Layer you need to define a path that will determine the shape used
for masking your content. Not associating a shape to a masking layer will completely render the
layers in the hierarchy invisible.

Basic Layer functions

 Layer:new(parent, {x=, y=, w=, h=})

Creates and returns a newly allocated Layer object with the specified frame rectangle. The
Layer is allocated added to a Box or as a sublayer of an existing Layer.
Parameters:
• parent: (userdata): the parent object to which the current Layer is to be added as a

child. The parent must be a Box (or one of its subclasses) or a Layer
• {x=, y=, w=, h=}: (table) the frame rectangle, i.e. position and size of the Layering

points. The origin of the frame is relative to the superview or parent layer in which the
Layer is nested

Returns:
• instance: (userdata) the instance of the created Layer

Discussion:
The created Layer is always added as the last object, i.e. top object in the layer hierarchy.

Usage:
aLayer = Layer:new(aBox, {x=10, y=10, w=100, h=100})

 Layer:newMask(parent)

Creates and returns a newly allocated masking Layer object whose alpha channel is used to
mask the visible layer’s content. The Layer is allocated added to a Box or as a sublayer of an
existing Layer.
Parameters:
• parent: (userdata): the parent object to which the current Image is to be added as a child

view
Returns:
• instance: (userdata) the instance of the created masking layer

Discussion:
The Layer’s alpha channel determines how much of the layer’s content and background
shows through. Fully or partially opaque pixels allow the underlying content to show through,
but fully transparent pixels block that content. If the mask Layer is smaller than the parent
layer, only the parts of the parent that intersect the mask will be visible.
By default a masking Layer has the same bounds as its parent. The Layer’s frame can
however be adapted with the :setFrame method.
When creating a masking Layer you need to define a path that will determine the shape used
for masking your content. Not associating a shape to a masking layer will completely render
the layers in the hierarchy invisible.
A masking layer can be inverted by setting the the invert parameter of the :applyPath
method to true.

Version 1.0	 30

iMSB Lua Widget Scripting	 	 	 	 	 	 	 The Layer class

Usage:
aMaskingLayer = Layer:newMask(backgroundLayer)
aMaskingLayer:setOpacity(0.8)
aMaskingLayer:beginPath()
 aMaskingLayer:ellipseInRect({x=20, y=30, w=60, h=40})
aMaskingLayer:applyPath(true)

 :delete()

Removes the Layer from the layer hierarchy and deallocates it.
Parameters:
• n/a

Returns:
• n/a

Usage:
aLayer:delete()

 :reorder(index)

Moves the specified Layer into the receiver’s list of sublayers at the specified index.
Parameters:
• index: (number): the index of the position in the layer hierarchy where the layer is to be

moved
Returns:
• n/a

Discussion:
The index must be a valid 0-based index into the sublayers array. An index 0 represents
the bottom layer whereas index n is the topmost layer.

Usage:
aLayer:reorder(2)

 :setFrame({x=, y=, w=, h=})

Sets the frame rectangle, which describes the Layer location and size in its superview’s or
parent layer coordinate system.
Parameters:
• {x=, y=, w=, h=}: (table) the frame rectangle, i.e. position and size of the Layer. The

origin of the frame is relative to the superview or parent layer in which the layer is nested
Returns:
• n/a

Discussion:
Changing the frame rectangle automatically redisplays the Layer with an implicit animation.

Version 1.0	 31

iMSB Lua Widget Scripting	 	 	 	 	 	 	 The Layer class

Usage:
aLayer:setFrame({x=20, y=20, w=150, h=150})

 :frame()

Returns the frame rectangle of a Layer instance, which describes the Layer location and size
in its superview’s or parent layer coordinate system.
Parameters:
• n/a

Returns:
• {x=, y=, w=, h=}: (table) the frame rectangle, i.e. position and size of the layer. The

origin of the frame is relative to the superview or parent layer in which the layer is nested
Usage:
local myLayerRect

myLayerRect = aLayer:frame()

 :setBounds({x=, y=, w=, h=})

Sets the bounding rectangle, which describes the Layer location and size in its superview’s or
parent layer coordinate system.
Parameters:
• {x=, y=, w=, h=}: (table) the frame bounds, i.e. location and size of the Layer. The

origin of the frame is relative to the superview or parent layer in which the layer is nested
Returns:
• n/a

Discussion:
The bounds rectangle is the origin and size of the layer in its own coordinate space. The
default bounds origin is (0,0) and the size is the same as the size of the rectangle in the
frame property.

Changing the bounds rectangle automatically redisplays the Layer with an implicit animation.
Usage:
aLayer:setBounds({x=0, y=0, w=150, h=150})

 :bounds()

Returns the bounds rectangle of a Layer instance, which describes the Layer’s location and
size in its own coordinate system.
Parameters:
• n/a

Returns:
• {x=, y=, w=, h=}: (table) the bounds rectangle

Discussion:

Version 1.0	 32

iMSB Lua Widget Scripting	 	 	 	 	 	 	 The Layer class

The default bounds origin is (0,0) and the size is the same as the size of the rectangle in the
frame property.

Usage:
local myLayerBounds
myLayerBounds = aLayer:bounds()

 :setPosition({x=, y=})

The Layer’s position in its superlayer’s coordinate space.
Parameters:
• {x=, y=}: (table) the coordinate of the position point, relative to the superview’s

coordinate system
Returns:
• n/a

Discussion:
The value of this property is specified in points and is always specified relative to the value in
the anchor property, i.e. its location within the Layer is depending on the anchor.
Setting this property updates the origin of the rectangle in the frame property appropriately.
Use this property, instead of the frame property, when you want to change the position of a
Layer.
Changing this property automatically redisplays the Layer with an implicit animation.

Usage:
aLayer:setPosition({x=20, y=20})

 :position()

Returns the Layer’s position in its superlayer’s coordinate space.
Parameters:
• n/a

Returns:
• {x=, y=}: (table) the coordinate of the position, relative to the superview’s or parent layer

coordinate system
Discussion:

The value of this property is specified in points and is always specified relative to the value in
the anchor property, i.e. its location within the Layer is depending on the anchor.

Usage:
local myLayerPosition
myLayerPosition = aLayer:position()

Version 1.0	 33

iMSB Lua Widget Scripting	 	 	 	 	 	 	 The Layer class

 :setAnchor({x=, y=)

Defines the anchor point of the layer's bounds rectangle. The anchor point is always expressed
relative to the layer’s width and height property.
Parameters:
• {x=, y=}: (table) the position of the anchor point relative to the layer bounding box. The

value of the x and y coordinates must be between 0 and 1
Returns:
• instance: (userdata) the instance of the created Image

Discussion:
You specify the value for this property using the unit coordinate space. The default value of
this property is (0.5, 0.5), which represents the center of the layer’s bounds rectangle. All
geometric manipulations to the view occur about the specified point. For example, applying a
rotation transform to a layer with the default anchor point causes the layer to rotate around its
center. Changing the anchor point to a different location would cause the layer to rotate
around that new point.
The value of the x and y coordinates must be between 0 and 1.
Modifying the anchor points does not have any effect on the Layer’s frame rectangle. The
value of the position attribute will however be updated to reflect the anchor change.

Usage:
aLayer:setAnchor({x=0.0, y=0.0)

 :anchor()

Returns the anchor point of the layer's bounds rectangle. The anchor point is always expressed
relative to the layer’s width and height property.
Parameters:
• n/a

Returns:
• {x=, y=}: (table) the position of the anchor point relative to the layer bounding box. The

value of the x and y coordinates must be between 0 and 1
Discussion:

The default value of this property is (0.5, 0.5), which represents the center of the layer’s
bounds rectangle. All geometric manipulations to the view occur about the specified point. For
example, applying a rotation transform to a layer with the default anchor point causes the
layer to rotate around its center. Changing the anchor point to a different location would cause
the layer to rotate around that new point.
The value of the x and y coordinates are expressed between 0 and 1.

Usage:
local myLayerAnchor
myLayerAnchor = aLayer:anchor()

Version 1.0	 34

iMSB Lua Widget Scripting	 	 	 	 	 	 	 The Layer class

 :hide(hidden)

Allows to hide or show a Layer.
Parameters:
• hidden: (boolean) a Boolean value that determines whether the layer is hidden

Returns:
• n/a

Discussion:
Changing this property hides or displays the Layer with an implicit animation.

Usage:
aLaywer:hide(true)

 :setBackgroundColor({r=, g=, b=, a=})

Sets the background color of Layer instance.
Parameters:
• {r=, g=, b=, a=}: (table) the color expressed with their red, green and blue color

components, as well as the alpha (transparency)
Returns:
• n/a

Discussion:
Color components and alpha (transparency) are expressed as a number between 0.0 and
1.0.
As an alternative you can use the :getColor method from the widget class to determine
the color components using on of the predefined colors.
Changing this property is performed with an implicit animation.

Usage:
aLayer:setBackgroundColor({r=255, g=128, b=152, a=1.0})

 aLayer:setBackgroundColor(self:getColor("whiteColor"))

 :setOpacity(opacity)

Sets the opacity of a Layer instance background color.
Parameters:
• opacity: (number) the opacity component to be applied to the background color

Returns:
• n/a

Discussion:
The value of this property must be in the range 0.0 (transparent) to 1.0 (opaque). Values
outside that range are clamped to the minimum or maximum. The default value of this
property is 1.0.
Changing this property is performed with an implicit animation.

Version 1.0	 35

iMSB Lua Widget Scripting	 	 	 	 	 	 	 The Layer class

Usage:
aLayer:setOpacity(0.8)

 :setBorderWidth(lineWidth)

Draws a border line of a given width around a Layer instance.
Parameters:
• lineWidth: (number) the width of the border line in points to be drawn

Returns:
• n/a

Discussion:
By default the color of the border line is drawn with a black color. The border line color can be
changed with the :setBorderColor method. The corner radius can be changed with
the :setCornerRadius method.
Changing this property is performed with an implicit animation.

Usage:
aLayer:setBorderWidth(2, 10)

 :setCornerRadius(cornerRadius)

Rounds the corners of a Layer bounding box by the provided radius.
Parameters:
• cornerRadius: (number) the corner radius expressed in points

Returns:
• n/a

Discussion:
The border line color can be changed with the :setBorderColor method. The line width
can be changed with the :setBorderWidth method.
Changing this property is performed with an implicit animation.
Usage:
aLayer:setCornerRadius(4)

 :setBorderColor({r=, g=, b=, a=})

Sets the color of a Layer border line.
Parameters:
• {r=, g=, b=, a=}: (table) the color expressed with their red, green and blue color

components, as well as the alpha (transparency)
Returns:
• n/a

Discussion:

Version 1.0	 36

iMSB Lua Widget Scripting	 	 	 	 	 	 	 The Layer class

Before using this method a border line must be draw around the Layer with
the :setBorderWidth method.
Color components and alpha (transparency) are expressed as a number between 0.0 and
1.0.
As an alternative you can use the :getColor method from the widget class to determine
the color components using on of the predefined colors.
Changing this property is performed with an implicit animation.

Usage:
aLayer:setBorderColor({r=255, g=128, b=152, a=1.0})

 aLayer:setBorderColor(self:getColor(“redColor"))

 :setShadow({r=, g=, b=, a=}, opacity, radius [,{w=, h=})

Draws a shadow around the bounds of a Layer instance. Properties like the shadow color, its
opacity and blur radius can be set, as well as an optional offset.
Parameters:
• {r=, g=, b=, a=}: (table) the shadow color expressed with their red, green and blue

color components, as well as the alpha (transparency)
• opacity: (number) set the shadow opacity. Opacity is expressed by a number between 0

and 1
• radius: (number) the blur radius (in points) used to render the Layer’s shadow
• {w=, h=}: (table, optional) the offset in points of the shadow. The default value of this

property is {w=0.0, h=0.0}
Returns:
• n/a

Discussion:
Note that the alpha component does not have any effect on the shadow opacity. You need to
set the opacity attribute in order the control the opacity.
By default the shadow offset is set to {w=0.0, h=0.0}, which means that it will be spread
evenly around the Box shape.
Alternatively you may draw a more complex shadow around you Layer by using a path
shape. If you specify a drawing path an apply it with :applyShapePath, the layer creates its
shadow using the specified path instead of the layer’s composited alpha channel.

Usage:
aLayer:setShadow(self:getColor("blackColor"), 0.8, 5, {w=3.0, h=3.0})

Layer transformation and animation functions

 :rotate(angle)

Rotates a Layer around its anchor point by a given angle.
Parameters:
• angle: (number) the angle of rotation given in degrees

Version 1.0	 37

iMSB Lua Widget Scripting	 	 	 	 	 	 	 The Layer class

Returns:
• n/a

Discussion:
The angle of rotation is expressed in degrees. A positive value specifies counterclockwise
rotation and a negative value specifies clockwise rotation.
The rotation center is dependent on the location of the anchor point.
Applying a rotation to a Layer is performed with an implicit animation.

Usage:
aLabel:rotate(30)

 :move(dx, dy)

Translates a Layer instance by a given amount on the x and y axis of the coordinate system.
Parameters:
• dx: (number) the translation direction on the x axis expressed in points
• dy: (number) the translation direction on the y axis expressed in points

Returns:
• n/a

Discussion:
Applying a translation to a Layer is performed with an implicit animation.

Usage:
aLabel:move(10,0)

 :scale(sx, sy)

Scales the size of a Layer instance by a given scale factor expressed on the x and y axis of
the coordinate system.
Parameters:
• sx: (number) the factor by which to scale the x-axis of the coordinate system
• sy: (number) the factor by which to scale the y-axis of the coordinate system

Returns:
• n/a

Discussion:
Applying a scale factor to a Layer is performed with an implicit animation.

Usage:
aLayer:scale(0.8, 1.2)

Version 1.0	 38

iMSB Lua Widget Scripting	 	 	 	 	 	 	 The Layer class

 :doAnimation(func, animationDur [, completionFct])

This function allows to conveniently perform a batch animation of several attributes of a Layer
instance. Calls a user provided function and animates its execution. Optionally a callback
function can be executed at the end of the animation.
Parameters:
• func: (function) the function you provide that will be executed in an animation
• animationDur: (number) the duration of the animation for the function execution
• completionFct: (function, optional) an optional function that will be called at the end of

an animation
Returns:
• n/a

Discussion:
If you wish to animate several attributes of a Layer instance you might consider doing this in
a specific animation function you provided to this method.
After the animation has been performed an optional completion function is called.

Usage:
 function myAnimation()
 aLayer:rotate(45)
 aLayer:move(30, 30)
 aLayer:setBackgroundColor(self:getColor("greenColor"))
 end

 function myCallback()
 print("animation ended")
 end

 aLayer:doAnimation(myAnimation, 4, myCallback)

Defining Layer path

 :beginPath()

Starts the definition of a new drawing path that will be applied to a Layer instance.
Parameters:
• n/a

Returns:
• n/a

Discussion:
A path specifies a set of mathematical graphic primitives, such as lines, arcs, ellipses, etc. you
use to construct your complex drawing. The :beginPath instruction tells the app that
subsequent drawing primitives belong to the started path.

Version 1.0	 39

iMSB Lua Widget Scripting	 	 	 	 	 	 	 The Layer class

Constructing a path must always be done within an :beginPath and :applyPath call in
your code in order for the system to know which primitives belong to the path you wish to
draw.
You can only define multiple drawing path per Layer instance, although this is not
recommended.
Unlike other objects a path does not have an implicit animation.

Usage:
aLayer:beginPath()
 aLayer:moveToPoint({x=10, y=10})
 aLayer:lineToPoint({x=90, y=10})
 aLayer:lineToPoint({x=50, y=80})
 aLayer:closePath()
aLayer:applyPath()
aLayer:setFillColor(self:getColor("redColor"))

 :applyPath([invert])

Ends the definition of a new drawing path and applies it to a Layer instance.
Parameters:
• invert: (boolean, optional) set the fill rule to inverted when filling the multiple crossing

closed path of a Layer
Returns:
• n/a

Discussion:
A path specifies a set of mathematical graphic primitives, such as lines, arcs, ellipses, etc. you
use to construct your complex drawing. The :endPath applies the drawing primitives you
defined to your Layer for rendering.
Constructing a path must be done within an :beginPath and :applyPath call in your code
in order for the system to know which primitives belong to the path you wish to draw.

. You can only define multiple drawing path per Layer instance, although this is not
recommended.
Unlike other objects a path does not have an implicit animation.
When the invert parameter is set to true an even-odd winding rule is applied when
rendering a path. It counts the total number of path crossings. If the number of crossings is
even, the point is outside the path. If the number of crossings is odd, the point is inside the
path and the region containing it should be filled.

Usage:
aLayer:beginPath()
 aLayer:ellipseInRect({x=10, y=40, w=80, h=20})
 aLayer:ellipseInRect({x=10, y=40, w=80, h=20}, -90, {x=50, y=50})
aLayer:applyPath(true)
aLayer:setStrokeColor(self:getColor(“blueColor"))

Version 1.0	 40

iMSB Lua Widget Scripting	 	 	 	 	 	 	 The Layer class

 :applyShadowPath()

Ends the definition of an explicit shadow path and applies it to a Layer’s shadow.
Parameters:
• n/a

Returns:
• n/a

Discussion:
A shape path may be used for creating a complex or a special effect shadow on a Layer.
When doing so you must explicitly add the created shape to its shadow path
property. .Constructing a shadow path must be done between a :beginPath
and :applyShadowPath call. If you specify a shadow path, the layer creates its shadow
using the specified path instead of the layer’s composited alpha channel. The path you
provide defines the outline of the shadow. It is filled using the current shadow color, opacity,
and blur radius.

Usage:
aLayer = Layer:new(box, {x=75, y=75, w=150, h=150});
aLayer:setBackgroundColor(self:getColor("blueColor"))
aLayer:setShadow(self:getColor("blackColor"), 0.8, 5, {w=3.0, h=3.0})
aLayer:beginPath()
 aLayer:ellipseInRect({x=-20, y=150-10, w=150+40, h=20})
aLayer:applyShadowPath()

 :moveToPoint({x=, y=})

Starts a path at a specified location given its coordinates.
Parameters:
• {x=, y=}: (table) the position to move the starting point of the path

Returns:
• n/a

Usage:
aLayer:moveToPoint({x=10, y=10})

 :lineToPoint({x=, y=} [,rotation, [{x=, y=}]])

Draws a line from the last position to the specified location. Optionally the line can be rotated
around a given rotation point.
Parameters:
• {x=, y=}: (table) the coordinates of the location to which to draw the line
• rotation: (number, optional) an optional rotation angle to apply to the line
• {x=, y=}: (table, optional) the coordinates of the rotation point

Returns:
• n/a

Version 1.0	 41

iMSB Lua Widget Scripting	 	 	 	 	 	 	 The Layer class

Discussion:
The origin of the line is set at the end point of the last specified drawing primitive. You may
reposition the origin with the :moveToPoint method.
A drawn line can be optionally rotated around a defined point. Per default the rotation point is
set at coordinates (0, 0) in the Layer coordinate system.
The angle of rotation is expressed in degrees. A positive value specifies counterclockwise
rotation and a negative value specifies clockwise rotation.

Usage:
aLayer:lineToPoint({x=80, y=10}, 20, {x=10, y=10})

 :rectangle({x=, y=, w=, h=} [, roundn, [,rotation, [{x=,
y=}]]])

Draws a rectangle shape given its bound box. Optionally corner roundness can be set, as well
as rotation around a given rotation point.
Parameters:
• {x=, y=, w=, h=}: (table) the bounding box coordinates in which the rectangle will be

drawn
• roundn: (number, optional) the corner radius expressed in points if provided
• rotation: (number, optional) an optional rotation angle to apply to the bounding box
• {x=, y=}: (table, optional) the coordinates of the rotation point

Returns:
• n/a

Discussion:
A drawn rectangle can be optionally rotated around a defined point. Per default the rotation
point is set at coordinates (0, 0) in the Layer coordinate system.
The angle of rotation is expressed in degrees. A positive value specifies counterclockwise
rotation and a negative value specifies clockwise rotation.

Usage:
aLayer:rectangle({x=20, y=40, w=80, h=20}, 4, 30, {x=40, y=50})

 :ellipseInRect({x=, y=, w=, h=}[,rotation, [{x=, y=}]])

Draws an ellipse shape given its bound box. Optionally the ellipse can be rotated around a
given rotation point.
Parameters:
• {x=, y=, w=, h=}: (table) the bounding box coordinates in which the ellipse will be

drawn
• rotation: (number, optional) an optional rotation angle to apply to the bounding box
• {x=, y=}: (table, optional) the coordinates of the rotation point

Returns:
• n/a

Discussion:

Version 1.0	 42

iMSB Lua Widget Scripting	 	 	 	 	 	 	 The Layer class

A drawn ellipse can be optionally rotated around a defined point. Per default the rotation point
is set at coordinates (0, 0) in the Layer coordinate system.
The optional angle of rotation is expressed in degrees. A positive value specifies
counterclockwise rotation and a negative value specifies clockwise rotation.

Usage:
aLayer:ellipseInRect({x=10, y=10, w=80, h=60})

 :arc({x=, y=}, r, startAngle, endAngle, clockwise)

Draws an arc to a graphics path, possibly preceded by a straight line segment.
Parameters:
• {x=, y=}: (table) the coordinates of the center point of the arc
• r: (number) the radius of the arc expressed in points
• startAngle: (number) the angle (in degrees) that determines the starting point of the arc,

measured from the x-axis in the current Layer space
• endAngle: (number) the angle (in degrees) that determines the ending point of the arc,

measured from the x-axis in the current Layer space
• clockwise: (number) a Boolean value that specifies whether or not to draw the arc in the

clockwise direction
Returns:
• n/a

Discussion:
An arc is a segment of a circle with radius r centered at a point (x,y). When you call this
method, you provide the center point, radius, and two angles in degrees. The app uses this
information to determine the end points of the arc, and then approximates the new arc using a
sequence of cubic Bézier curves. The clockwise parameter determines the direction in
which the arc is created.
If the specified path already contains a drawing, the app implicitly adds a line connecting the
subpath’s current point to the beginning of the arc. If the path is empty, the app creates a new
subpath with a starting point set to the starting point of the arc.
The ending point of the arc becomes the new current point of the path.
For another way to draw an arc in a path, :arcToPoint.

Usage:
aLayer:arc({x=50, y=50}, 40, 0, 90, false)

 :arcToPoint(p1{x=, y=}, p2{x=, y=}, r)

Draws an arc to a graphics path, possibly preceded by a straight line segment.
Parameters:
• p1{x=, y=}: (table) the coordinate of the Layer space for the end point of the first

tangent line. The first tangent line is drawn from the current point to (x1,y1)
• p2{x=, y=}: (table) the coordinate of the Layer space for the end point of the second

tangent line. The second tangent line is drawn from (x1,y1) to (x2,y2)
• r: (number) the radius of the arc expressed in points

Version 1.0	 43

iMSB Lua Widget Scripting	 	 	 	 	 	 	 The Layer class

Returns:
• n/a

Discussion:
This method uses a sequence of cubic Bézier curves to create an arc that is tangent to the
line from the current point to (x1,y1) and to the line from (x1,y1) to (x2,y2). The start and end
points of the arc are located on the first and second tangent lines, respectively. The start and
end points of the arc are also the “tangent points” of the lines.
If the current point and the first tangent point of the arc (the starting point) are not equal, the
app appends a straight line segment from the current point to the first tangent point.
The ending point of the arc becomes the new current point of the path.
For another way to draw an arc in a path, :arc.

Usage:
aLayer:moveToPoint({x=10, y=10})
aLayer:arcToPoint({x=80, y=50}, {x=10, y=80}, 20)

 :curveToPoint(cp1{x=, y=}, cp2{x=, y=}, {x=, y=})

Draws a cubic Bézier curve to a graphics path.
Parameters:
• cp1{x=, y=}: (table) the coordinate of the first control point
• cp2{x=, y=}: (table) the coordinate of the second control point
• {x=, y=}: (table) the coordinate of the end point of the curve

Returns:
• n/a

Discussion:
Draws a cubic Bézier curve from the current point in a path to the specified location using two
control points. Before returning, this function updates the current point to the specified
location (x,y).

Usage:
aLayer:moveToPoint({x=40, y=10})
aLayer:curveToPoint({x=80, y=50}, {x=10, y=80}, {x=10, y=80})

 :closePath()

Closes and completes a subpath in a graphics path, by appending a line to the first point in the
path.
Parameters:
• n/a

Returns:
• n/a

Discussion:

Version 1.0	 44

iMSB Lua Widget Scripting	 	 	 	 	 	 	 The Layer class

Appends a line from the current point to the starting point of the current path and closes the
subpath.
After closing the subpath, your script can begin a new subpath without first
calling :moveToPoint. In this case, a new subpath is implicitly created with a starting and
current point equal to the previous subpath’s starting point.

Usage:
aLayer:moveToPoint({x=10, y=10})
aLayer:lineToPoint({x=90, y=10})
aLayer:lineToPoint({x=50, y=80})
aLayer:closePath()

Setting path attributes

 :setStrokeColor({r=, g=, b=, a=})

The color used to stroke the Layer’s path.
Parameters:
• {r=, g=, b=, a=}: (table) the color expressed with their red, green and blue color

components, as well as the alpha (transparency)
Returns:
• n/a

Discussion:
This method has only an effect on the stroke color of the drawing path specified for the
Layer.
Color components and alpha (transparency) are expressed as a number between 0.0 and
1.0.
As an alternative you can use the :getColor method from the widget class to determine
the color components using on of the predefined colors.
Changing this property is performed with an implicit animation.

Usage:
aLayer:setStrokeColor(self:getColor("blueColor"))

 :setLineWidth(width)

Specifies the line width of the Layer’s path.
Parameters:
• width: (number) the line width in point when stroking the path

Returns:
• n/a

Discussion:
This method has only an effect on the stroke width of the drawing path specified for the
Layer.
Changing this property is performed with an implicit animation.

Version 1.0	 45

iMSB Lua Widget Scripting	 	 	 	 	 	 	 The Layer class

Usage:
aLayer:setAnchor({x=0.0, y=0.0)

 :setStrokeStart(start)

The relative location at which to begin stroking the path of a Layer.
Parameters:
• start: (number) the value of relative start or the stroke with respect to its total length. The

value must be between 0 and 1
Returns:
• n/a

Discussion:
The value of this property must be in the range 0.0 to 1.0. The default value of this property
is 0.0.
Combined with the :setStrokeEnd method, this property defines the subregion of the path
to stroke. The value in this property indicates the relative point along the path at which to
begin stroking while :setStrokeEnd defines the end point. A value of 0.0 represents the
beginning of the path while a value of 1.0 represents the end of the path. Values in between
are interpreted linearly along the path length.
Changing this property is performed with an implicit animation.

Usage:
aLayer:setStrokeStart(0.2)

 :setStrokeEnd(end)

The relative location at which to stop stroking the path of a Layer.
Parameters:
• end: (number) the value of relative end or the stroke with respect to its total length. The

value must be between 0 and 1
Returns:
• n/a

Discussion:
The value of this property must be in the range 0.0 to 1.0. The default value of this property
is 0.0.
Combined with the :setStrokeStart method, this property defines the subregion of the
path to stroke. The value in this property indicates the relative point along the path at which to
finish stroking while :setStrokeStart defines the start point. A value of 0.0 represents the
beginning of the path while a value of 1.0 represents the end of the path. Values in between
are interpreted linearly along the path length.
Changing this property is performed with an implicit animation.

Usage:
aLayer:setStrokeEnd(0.8)

Version 1.0	 46

iMSB Lua Widget Scripting	 	 	 	 	 	 	 The Layer class

 :setFillColor({x=, y=)

The color used to fill the Layer’s path.
Parameters:
• {r=, g=, b=, a=}: (table) the color expressed with their red, green and blue color

components, as well as the alpha (transparency)
Returns:
• n/a

Discussion:
This method has only an effect on the fill color of the drawing path specified for the Layer.
Color components and alpha (transparency) are expressed as a number between 0.0 and
1.0.
As an alternative you can use the :getColor method from the widget class to determine
the color components using on of the predefined colors.
Changing this property is performed with an implicit animation.

Usage:
aLayer:setFillColor(self:getColor("blueColor"))

 :setLineDashPattern({ })

The dash pattern applied to the Layers’s path when stroked.
Parameters:
• { }: (table) the position of the anchor point relative to the layer bounding box. The value of

the x and y coordinates must be between 0 and 1
Returns:
• n/a

Discussion:
The dash pattern is specified as an array of numbers that specify the lengths of the painted
segments and unpainted segments, respectively, of the dash pattern.
For example, passing an array with the values {2, 3} sets a dash pattern that alternates
between a 2-user-space-unit-long painted segment and a 3-user-space-unit-long unpainted
segment. Passing the values {10, 5, 5, 5} sets the pattern to a 10-unit painted segment,
a 5-unit unpainted segment, a 5-unit painted segment, and a 5-unit unpainted segment.
The default value if this property is a solid line. Calling the method with an empty argument
set the dash pattern to solid.
Changing this property is performed with an implicit animation.

Usage:
aLayer:setLineDashPattern({2,4})
aLayer:setLineDashPattern()

Version 1.0	 47

iMSB Lua Widget Scripting	 	 	 	 	 	 	 The Layer class

 :setLineJoin(joinType)

Specifies the line join style for the Layers’s path.
Parameters:
• joinType: (number) a number indicating the line join type. Following line join ties can be

used:
- 1: specifies a miter line shape of the joints between connected segments of a stroked

path
- 2: specifies a round line shape of the joints between connected segments of a stroked

path
- 3: Specifies a bevel line shape of the joints between connected segments of a stroked

path
Returns:
• n/a

Discussion:
The line join style specifies the shape of the joints between connected segments of a stroked
path.
The default value of this property is 1 (miter).

Usage:
aLayer:setLineJoin(2)

Version 1.0	 48

iMSB Lua Widget Scripting	 	 	 	 	 	 	 Example scripts

Example scripts

LipoMeter.lua

--[[LipoMeter.lua

A demo widget displaying the lipo pack voltage and its individual
cells in a bar graph.

Up to 4 cells can be displayed along the pack voltage. Individual
sensor values are

configured in the display settings view.

--]]

-- Setting widget and value parameters

luaWidgetParam = {

 size= {w= 300, h= 230},

 name= "LiPo meter",

 sensorValueFields= {

 {id= "Pack voltage", type = "scalar"},

 {id= "Cell 1", type= "scalar"},

 {id= "Cell 2", type= "scalar"},

 {id= "Cell 3", type= "scalar"},

 {id= "Cell 4", type= "scalar"}

 }

}

local valueCell1, valueCell2, valueCell3, valueCell4

local valuePack

local cellBarSteps = 7

local packBarSteps = 10

function setupSensorValue(instance, steps)

 local data = {}

 data.instance = instance

 data.steps = steps

 if instance then

 data.name = instance:getName()

 data.unit = instance:getUnit()

Version 1.0	 49

iMSB Lua Widget Scripting	 	 	 	 	 	 	 Example scripts

 if data.instance:getAlarmEnabled("min") then

 data.minAlarm = instance:getAlarmValue("min")

 end

 if data.instance:getAlarmEnabled("max") then

 data.maxAlarm = instance:getAlarmValue("max")

 end

 data.minDisp, data.maxDisp = instance:getDisplayRange()

 if not data.minDisp then

 data.minDisp = 0

 end

 data.dispRange = data.maxDisp - data.minDisp

 end

 return data

end

function tapHandlerCell1()

 if valueCell1.instance then

 valueCell1.instance:announceValue()

 end

end

function tapHandlerCell2()

 if valueCell2.instance then

 valueCell2.instance:announceValue()

 end

end

function tapHandlerCell3()

 if valueCell3.instance then

 valueCell3.instance:announceValue()

 end

end

function tapHandlerCell4()

Version 1.0	 50

iMSB Lua Widget Scripting	 	 	 	 	 	 	 Example scripts

 if valueCell4.instance then

 valueCell4.instance:announceValue()

 end

end

function tapHandlerPack()

 if valuePack.instance then

 valuePack.instance:announceValue()

 end

end

function setupCellBars(frame, barFrame, valueData, title)

 local barView = Box:new(frame)

 barView:setBackgroundColor(self:getColor("clearColor"))

 -- create name label

 if title then

 local lbl = Label:new(barView, {x=5, y=8, w=38, h=15})

 lbl:setFont("Helvetica", 10)

 lbl:setTextAlignment("center")

 lbl:setText(title)

 end

 local barLayer = Layer:new(barView, barView:bounds())

 barLayer:setBackgroundColor(self:getColor("clearColor"))

 --local barFrame = bframe

 -- create bar shape

 local meterBar = Layer:new(barLayer, barFrame);

 meterBar:setBackgroundColor(self:getColor("clearColor"))

 meterBar:beginPath()

 meterBar:moveToPoint({x=barFrame.w/2, y=barFrame.h})

 meterBar:lineToPoint({x=barFrame.w/2, y=0})

 meterBar:applyPath()

 meterBar:setStrokeColor(self:getColor("grayColor"))

 meterBar:setLineWidth(barFrame.w)

Version 1.0	 51

iMSB Lua Widget Scripting	 	 	 	 	 	 	 Example scripts

 -- create green shape

 local greenBar = Layer:new(barLayer, barFrame);

 greenBar:setBackgroundColor(self:getColor("clearColor"))

 greenBar:beginPath()

 greenBar:moveToPoint({x=barFrame.w/2, y=barFrame.h})

 greenBar:lineToPoint({x=barFrame.w/2, y=0})

 greenBar:applyPath()

 greenBar:setStrokeColor(self:getColor("greenColor"))

 greenBar:setLineWidth(barFrame.w)

 if not valueData.instance then

 greenBar:setStrokeEnd(0)

 end

 -- create red alarm shape

 local redBar = Layer:new(barLayer, barFrame);

 redBar:setBackgroundColor(self:getColor("clearColor"))

 redBar:beginPath()

 redBar:moveToPoint({x=barFrame.w/2, y=barFrame.h})

 redBar:lineToPoint({x=barFrame.w/2, y=0})

 redBar:applyPath()

 redBar:setStrokeColor(self:getColor("alarmColor"))

 redBar:setLineWidth(barFrame.w)

 local s = 0

 if valueData.minAlarm then

 s = (valueData.minAlarm - valueData.minDisp) /
valueData.dispRange

 s = math.floor((s * valueData.steps) + 0.5) / valueData.steps

 end

 redBar:setStrokeEnd(s)

 -- create the opaque bar

 local valueBar = Layer:new(barLayer, barFrame);

 valueBar:setBackgroundColor(self:getColor("clearColor"))

 valueBar:beginPath()

 valueBar:moveToPoint({x=barFrame.w/2, y=0})

 valueBar:lineToPoint({x=barFrame.w/2, y=barFrame.h})

 valueBar:applyPath()

 local clValBar = self:getColor("whiteColor"); clValBar.a = 0.65

 valueBar:setStrokeColor(clValBar);

Version 1.0	 52

iMSB Lua Widget Scripting	 	 	 	 	 	 	 Example scripts

 valueBar:setLineWidth(barFrame.w)

 valueData["valueBar"] = valueBar

 -- create masking shape

 local maskShape = Layer:newMask(barLayer);

 local maskFrame = barFrame; maskFrame.y = maskFrame.y + 12;
maskFrame.h = 4

 maskShape:beginPath()

 for i = 0, valueData.steps, 1 do

 maskShape:rectangle(maskFrame)

 maskFrame.y = maskFrame.y + 16

 end

 maskShape:applyPath(true)

 -- create the label

 local lblValue

 if title then -- cell value label

 lblValue = Label:new(barView, {x=0, y=150, w=40, h=20})

 lblValue:setFont("lcd", 15)

 lblValue:setTextAlignment("right")

 lblValue:setText"---"

 if not valueData.instance then

 lblValue:setTextColor(self:getColor("grayColor"))

 end

 valueData["lblValue"] = lblValue

 else -- pack value label

 lblValue = Label:new(barView, {x=0, y=176, w=62, h=32})

 lblValue:setFont("lcd", 26)

 lblValue:setTextAlignment("right")

 lblValue:setText("---")

 valueData["lblValue"] = lblValue

 local lblUnit = Label:new(barView, {x=66, y=183, w=18, h=19})

 lblUnit:setFont("Helvetica", 17)

 lblUnit:setText(valueData.unit)

 if not valueData.instance then

 lblValue:setTextColor(self:getColor("grayColor"))

Version 1.0	 53

iMSB Lua Widget Scripting	 	 	 	 	 	 	 Example scripts

 lblUnit:setTextColor(self:getColor("grayColor"))

 end

 end

 return barView

end

function displayValue(valueData)

 if not valueData.instance then

 return

 end

 -- display sensor value

 valueData.lblValue:setText(valueData.instance:getValueStr())

 -- set value label & check alarm

 valueData.lblValue:setAlarmed(valueData.instance:isValueAlarmed())

 -- set bar graph

 local value = valueData.instance:getValue()

 local s = 0

 s = (value - valueData.minDisp) / valueData.dispRange;

 if s > 1 then s = 1 elseif s < 0 then s = 0 end

 s = math.floor((s * valueData.steps) + 0.5) / valueData.steps;

 valueData.valueBar:setStrokeEnd(1 - s)

end

function initialiseWidget(self)

 -- get the sensor values

 valuePack = setupSensorValue(self:sensorValueForField("Pack
voltage"), packBarSteps)

 valueCell1 = setupSensorValue(self:sensorValueForField("Cell 1"),
cellBarSteps)

 valueCell2 = setupSensorValue(self:sensorValueForField("Cell 2"),
cellBarSteps)

 valueCell3 = setupSensorValue(self:sensorValueForField("Cell 3"),
cellBarSteps)

Version 1.0	 54

iMSB Lua Widget Scripting	 	 	 	 	 	 	 Example scripts

 valueCell4 = setupSensorValue(self:sensorValueForField("Cell 4"),
cellBarSteps)

 self:setMeterView("lcdPanel")

 local view

 -- create value label

 view = Label:new({x=16, y=13, w=180, h=15})

 view:setFont("Helvetica", 11)

 if valuePack.instance then

 view:setText(valuePack.instance:getName())

 else

 view:setText("<no value set>")

 view:setTextColor(self:getColor("grayColor"))

 end

 -- setup the cell bars

 local boundingFrame

 local barFrame

 -- cell 1

 boundingFrame = {x=12, y=42, w=48, h=177}

 barFrame = {x=9, y=29, w=30, h=109}

 view = setupCellBars(boundingFrame, barFrame, valueCell1, "Cell
1")

 view:addTapHandler(tapHandlerCell1)

 -- cell 2

 boundingFrame.x = boundingFrame.x + boundingFrame.w

 barFrame = {x=9, y=29, w=30, h=109}

 view = setupCellBars(boundingFrame, barFrame, valueCell2, "Cell
2")

 view:addTapHandler(tapHandlerCell2)

 -- cell 3

 boundingFrame.x = boundingFrame.x + boundingFrame.w

 barFrame = {x=9, y=29, w=30, h=109}

 view = setupCellBars(boundingFrame, barFrame, valueCell3, "Cell
3")

 view:addTapHandler(tapHandlerCell3)

 -- cell 4

Version 1.0	 55

iMSB Lua Widget Scripting	 	 	 	 	 	 	 Example scripts

 boundingFrame.x = boundingFrame.x + boundingFrame.w

 barFrame = {x=9, y=29, w=30, h=109}

 view = setupCellBars(boundingFrame, barFrame, valueCell4, "Cell
4")

 view:addTapHandler(tapHandlerCell4)

 -- pack

 boundingFrame = {x=206, y=10, w=84, h=210}

 barFrame = {x=11, y=13, w=64, h=158}

 view = setupCellBars(boundingFrame, barFrame, valuePack, nil)

 view:addTapHandler(tapHandlerPack)

end

function updateWidget(self)

 displayValue(valuePack)

 displayValue(valueCell1)

 displayValue(valueCell2)

 displayValue(valueCell3)

 displayValue(valueCell4)

end

Version 1.0	 56

iMSB Lua Widget Scripting	 	 	 	 	 	 	 Change history

Change history

Document
version

Date Status Short description of the modification

1.0 28.04.2021 Release Initial version

Version 1.0	 57

